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Abstract: We demonstrated the apoptotic effect of bee venom (BV) on human MDA-MB-
231 breast cancer cells using Raman spectroscopy and principal component analysis (PCA). 
Biochemical changes in cancer cells were monitored following BV treatment; the results for 
different concentrations and treatment durations differed markedly. Significantly decreased 
Raman vibrations for DNA and proteins were observed for cells treated with 3.0 µg/mL BV 
for 48 h compared with those of control cells. These results suggest denaturation and 
degradation of proteins and DNA fragmentation (all cell death-related processes). The Raman 
spectroscopy results agreed with those of atomic force microscopy and conventional 
biological tests such as viability, TUNEL, and western blot assays. Therefore, Raman 
spectroscopy, with PCA, provides a noninvasive, label-free tool for assessment of cellular 
changes on the anti-cancer effect of BV. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Bee venom (BV) extracted from honey bees is commonly used in Korean medicine to treat 
diseases, including pain, arthritis, tumor, and skin diseases [1–3]. It is composed of a complex 
mixture of biologically active peptides, including melittin (a major component of BV), 
apamin, adolapin, mast-cell-degranulating (MCD) peptide; enzymes (phospholipase A2, and 
hyaluronidase), and non-peptide components (histamine, dopamine, and norepinephrine), 
which have a variety of pharmaceutical properties [2–5]. Recent studies have shown that BV 
has anti-cancer effects, including induction of apoptosis and inhibition of proliferation in 
various cancer cells, such as prostate, breast, lung, liver, ovarian, and bladder [3,6–9]. The 
efficacy of BV appears to be due to the synergistic effect and selective cytotoxicity of 
melittin, and this anti-cancer peptide might be a better choice than the native form of BV 
[10,11]. 

The interaction of anti-cancer agents with the affected cells is considered to be very 
important for the selection and optimization of a drug to attain the most effective cancer 
treatment. It is well known that the function of an anti-cancer agent is to induce apoptosis of 

                                                                      Vol. 9, No. 11 | 1 Nov 2018 | BIOMEDICAL OPTICS EXPRESS 5703 

#345244 https://doi.org/10.1364/BOE.9.005703 
Journal © 2018 Received 6 Sep 2018; revised 16 Oct 2018; accepted 16 Oct 2018; published 25 Oct 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.9.005703&domain=pdf&date_stamp=2018-10-25


the target cancer cells. Apoptosis is characterized by cellular morphological changes, such as 
shrinkage, membrane blebbing, DNA cleavage, caspase activation, and mitochondrial 
dysfunction [12–14]. 

Assays for apoptosis, such as MTT and western blot that measure enzymatic activity and 
protein synthesis as endpoints and are associated with cell viability, have been investigated 
for chemosensitivity testing [15]. These assays are invasive, destructive, time-consuming, 
labor-intensive, and involve complicated procedures. Furthermore, it requires large amounts 
of material, while the product yield is low. The dynamics of the interactions cannot be 
examined directly with these assays as the introduction of fluorescent labels during 
measurement can change the biological conditions. Therefore, a non-invasive, label-free 
analytical technique is needed for the real-time monitoring of live cells. 

Raman spectroscopy is a non-invasive and rapid detection technique that requires no 
sample labeling prior to analysis [16–19]. Thus, this technique is being explored extensively 
for the analysis of biological systems. Raman spectroscopy provides quantitative information 
about the molecular structure, chemical composition, and molecular interactions within the 
cells, with high sensitivity and selectivity. The intracellular information about nucleic acids, 
proteins, lipids, and other components can be explored using variations in spectral shape or 
intensity [20–23]. Raman spectroscopy has been applied for the analysis of the effect of 
external agents on the cells, causing specific time-dependent biochemical changes associated 
with the process of cell death [24–29]. Notingher et al. used Raman spectroscopy to measure 
the time-dependent molecular changes in cells during apoptosis [28]. Byrne et al. evaluated 
the effect of the chemotherapeutic drug Actinomycin D in A549 lung cancer cell line using 
Raman spectroscopy [30]. However, the anti-cancer effect of BV on breast cancer cells has 
not been evaluated by Raman spectroscopy. 

In this study, we investigated the biochemical changes at the molecular level in human 
MDA-MB-231 breast cancer cells using Raman spectroscopy following exposure to BV. In 
addition, we examined the correlation between the Raman data and the results from 
conventional cytotoxicity assays and apoptotic DNA damage. We also investigated the 
morphological characteristics of MDA-MB-231 cells following BV treatment using atomic 
force microscopy (AFM). 

2. Materials and methods 
2.1 Cell culture and treatment 

The MDA-MB-231 human breast cancer cells were obtained from the American Type Culture 
Collection (Manassas, VA, USA). The cells were cultured in Dulbecco’s modified Eagle 
medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and antibiotics, in a 
humidified atmosphere containing 5% CO2 and 95% air at 37°C. Human peripheral blood 
mononuclear lymphocytes (PBMLs) were isolated from the blood of the donors by Ficoll-
hypaque gradient centrifugation. Blood was layered onto high-density Ficoll-Hypaque 
medium (Ficoll 400, GE Healthcare Life Sciences) at density 1.114 g/mL and centrifuged at 
600 × g for 30 min at room temperature. PBMLs resolved into two distinct bands, the upper 
containing PBMC and the lower containing neutrophils. PBMLs were harvested and washed 
three times in phosphate buffered saline (PBS) [31]. For AFM and Raman spectroscopic 
analysis, the cells were cultured on gold-coated glass (5 mm × 5 mm) and incubated for 24 h. 
The cells were treated with bee venom (Sigma-Aldrich, MO, USA: The composition of the 
BV was as follows: 50-55% melittin, 2.5-3% apamin, 2-3% MCD peptide, 12% PLA2, 1% 
lyso-PLA, 0.5-1% histidine, 1.5-2% hyaluronidase, 2% amine and 10-17% other, including 
protease inhibitor, glucosidase, invertase, acid phosphomonoesterase, dopamine, 
nonepinephrine, with > 99.5% purity) and further incubated for 24 h. The cells were washed 
twice with PBS and fixed in 4% paraformaldehyde in PBS for 20 min at 4°C. After fixation, 
the gold-coated substrate was briefly washed with PBS and deionized water and air-dried. 
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2.2 Viability assay 

The cells were seeded (2 × 105 cells per well) in 96 well plates, subsequently the subconfluent 
cells were treated with BV (0.7, 1.5, 3.0, 6.0, and 12.5 µg/mL) or vehicle (saline) for 12 h, 24 
h, 48 h and 72 h. After treatment, cell viability was measured using the Cell Counting Kit-8 
(CCK-8) according to the manufacturer's instructions. Briefly, the CCK-8 solution (10 µL per 
100 µL of medium in each well) was added, the plates were incubated at 37°C for 1 h, and the 
absorbance of each well was read at 450 nm using a microplate reader. 

2.3 TUNEL assay 

The Apoptosis Detection System developed by Promega was used according to the supplier's 
protocol. Briefly, after treatment with 3.0 μg/mL of BV for 12 h, 24 h and 48 h, the cells were 
washed twice with PBS, and 5 mL of 1% ice-cold paraformaldehyde was added for 20 min. 
The cells were incubated for 1 h at 37°C in the dark in 50 μL of equilibration buffer 
containing fluorescein-12-dUTP in the presence of terminal deoxynucleotidyl transferase to 
label 3′-OH ends of fragmented DNA. The reaction was stopped by adding 1 mL of 20 mM 
EDTA, and the cells were washed with PBS containing 0.1% Triton X-100 and 5.0 µg/mL of 
bovine serum albumin (BSA). The cells were stained with a mixture of 5.0 μg/mL of 
propidium iodide (PI) and 250 μg of RNase A, incubated at room temperature in the dark for 
30 min before analysis by fluorescence microscopy (Axiovert S 100, Zeiss, USA) and 
captured using an Axiocam MRc5 CCD camera (Carl Zeiss, Germany) at × 200 
magnification. 

2.4 Flowcytometry analysis 

Surface exposure of phosphatidylserine (PS) by apoptotic cells was measured by flow 
cytometer by adding annexin V- V-FITC (Becton Dickinson, USA) according to the 
manufacturer's specifications (Annexin V Detection Kit), and stained simultaneously with PI. 
Samples were analyzed on a FACSort flow cytometer using standard Lysis II software 
(Becton Dickinson, USA). Excitation was set at 488 nm, and the emission filters used were 
515-545 nm (green, FITC) and 600 nm (red, PI). 

2.5 Western blot analysis 

Proteins were extracted from MDA-MB-231 cells treated with BV (0.7, 1.5, 3.0 µg/mL) or 
vehicle (saline) for 12 h, 24 h, and 48 h. The cells were lysed with protein lysis buffer, and 
the protein concentrations were determined by Bradford protein assay. Determination of 
microgram quantities of protein in the Bradford Coomassie brilliant blue assay (Bio-Rad, 
Laboratories, Inc., CA, USA) is accomplished by measurement of absorbance at 590 nm) 
[32]. The proteins were separated using 12% SDS-PAGE, and then transferred to Hybond-
ECL [enhanced chemiluminescence] membranes (Amersham, Little Chalfont, 
Buckinghamshire, UK). The membranes were blocked with 6% non-fat milk dissolved in 
TBST buffer (10 mM Tris-Cl [pH 8.0], 150 mM NaCl, 0.05% Tween 20). The blots were 
then probed with various rabbit polyclonal antibodies for PARP, Caspase-8, Caspase-9, 
Caspase-3 (0.5 μg/mL; Cell Signaling Tech., MA, USA), β-actin and or non-immune mouse 
IgG (0.5 μg/mL; Sigma-Aldrich Co, MO, USA) diluted 1:1,000 in Tris-buffered saline at 4°C 
overnight; and then incubated with 1:2,000 dilutions of goat anti-rabbit IgG secondary 
antibody coupled with horseradish peroxidase. The membranes were washed with TBST 
between each treatment. The blots were developed using the ECL method (GE Healthcare). 

2.6 AFM measurement 

Non-contact mode AFM images were obtained using a NANOstation II (Surface Imaging 
Systems, Herzogenrath, Germany) equipped with a 42.5 μm XY/4 μm Z scanner and a Zeiss 
optical microscope (Epiplan 50). AFM was performed on an active vibration isolation table 
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(TS-150, S.I.S., Herzogenrath, Germany) inside a passive vibration isolation table (Pucotech, 
Seoul, Korea) to eliminate external noise. Non-contact mode AFM imaging was performed at 
room temperature using a silicon cantilever with aluminum reflex coating (Budget Sensor, 
Bulgaria). The material properties and dimensions of the probe used in this study was as 
follows: resonance frequency, 190 kHz; force constant, 48 N/m; cantilever length, 225 μm; 
cantilever width, 38 μm; cantilever thickness, 7 μm; tip radius, < 10 nm; and tip height, 17 
μm. The MDA-MB-231 cells were scanned at a resolution of 512 × 512 pixels with a scan 
rate of 0.6 lines/s. 

2.7 Raman spectroscopy 

For the Raman spectroscopic measurements, we used gold-coated substrate. A thin 10 nm, Cr 
layer followed by a 50 nm gold layer were e-beam evaporated on the glass substrate. The Cr 
layer was included to increase the adhesion between the gold film and the glass substrate. 
This substrate was minimized spectral contributions from the sample substrate such as glass 
and enhanced the Raman signal compared to that. Pure metals are known to have no Raman 
spectral features and very low background signal. For the isolated single cells, the relative 
position of the laser can potentially affect the spectrum. Thus for all the isolated single cells 
used, the position of the spot was retained the same in relation to the cell, which the Raman 
spectra were obtained centrally over the nucleus of the cells when visible. At least ten 
individual cells were selected from each cell-group for measurement. Raman spectra were 
acquired using the SENTERRA confocal Raman system (Bruker Optics Inc., Billerica, MA, 
USA) equipped with a 785-nm diode laser source (100 mW before objective) and a resolution 
of 3 cm−1. A 100x air objective (MPLN N.A. 0.9, Olympus), which produces a laser spot size 
of ~1 µm was used to collect Raman signals and focus the laser on a single cell. The raw 
spectra were loaded into OPUS software (Bruker Optics Inc., Billerica, MA, USA) to remove 
cosmic rays manually and subtract the autofluorescence background from every sample 
spectrum. Raman spectral acquisition and pre-processing of preliminary data, such as baseline 
subtraction, smoothing, normalization and spectrum analysis were carried out using OPUS 
software. An automated algorithm for autofluorescence background removal was applied to 
the measured data to extract pure sample Raman spectra. Baseline correction was performed 
using the rubber-band method, which was used to stretch between the spectrums endpoints. 
The baseline-corrected Raman spectra were normalized using the vector normalization 
method. All Raman measurements were recorded with an accumulation time of 60 s in the 
600-1750 cm−1 range. The Raman spectra of the cells were calculated as the average of ten 
measured samples. 

2.8 Multivariate analysis 

Principal component analysis (PCA) was used for statistical analysis. It is one of the 
multivariate statistical techniques for reducing high-dimensional data to low-dimensional 
data. The goal of the PCA is to find the fewest uncorrelated variables, called the principal 
components (PCs), to account for the maximum variance of the data. As a result, the first 
principal component has the largest variance possible, and each subsequent principal 
component has the highest possible variance in orthogonal position with the preceding 
components. For PCA, MATLAB's statistics and machine learning toolbox was used. The 
data sets used for PCA, include Raman spectral data sets based on various concentrations and 
time periods. Raman spectral data based on various concentrations consist of 40 observations; 
10 observations for each concentration (i.e., 0, 0.7, 1.5, and 3.0 μg/mL). Data based on 
various time periods have a total of 40 observations; 10 observations for each time period 
(i.e., 0, 12, 24, and 48 h) Raman intensities measured at 2301 frequencies (600–1750 cm−1) 
were used as original variables for data analysis. From the PCA-based spectrum data sets, the 
principal component scores and loadings for each PC were calculated. The three PCs obtained 
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To identify the apoptotic effect of BV in MDA-MB-231 cells, we performed the TUNEL 
assay. We observed many TUNEL-positive cells with small, dense, and fragmented 
morphology emitting yellow fluorescence, whereas the PI stained nucleus in the control cells 
exhibited round morphology and emitted red fluorescence as shown in Fig. 2(A). To confirm 
the mode of BV-induced cell death, we stained the MDA-MB-231 cells with annexin V/PI for 
12 h, 24 h and 48 h after exposure to 3.0 μg/mL of BV, and analyzed by flow cytometry. 
Figure 2(B) shows a time-dependent increase in the number of annexin V-positive cells, such 
as 12.0%, 13.3%, and 15.2% for 12 h, 24 h and 48 h of exposure, respectively, was observed, 
suggesting that BV initiated apoptosis in this cell population and it did not increase the 
number of necrotic cells double-stained with annexin V/PI. Caspases are believed to play a 
central role in the apoptotic signaling pathway. Therefore, we evaluated the expression of 
caspase-8, −9 and −3 in MDA-MB-231 cells following treatment with 3.0 μg/mL BV for 12 
h, 24 h and 48 h. Interestingly, we observed that BV inhibits the protein level of caspase-8, −9 
and −3 of MDA-MB-231 cells in a time-dependent manner (Fig. 2(C)). Also, BV caused the 
proteolytic cleavage of PARP, determined by the disappearance of the full-length 116 kDa 
protein of MDA-MB-231 cells (Fig. 2(C)). Bee venom dose-dependently reduced the 
expression level of caspase-8, −9 and −3 and PARP of MDA-MB-231 cells (Fig. 2(D)). 

3.3 Morphological changes in MDA-MB231 cells by BV treatment 

We performed AFM measurement to observe the morphological changes in MDA-MB-231 
cells following bee venom treatment. Figure 3 shows representative AFM topography images 
(40 × 40 μm2) taken from fixed MDA-MB-231 cells that were treated with 0, 0.7, 1.5, and 3.0 
μg/mL BV for 48 h (Fig. 3(A)), and 3.0 μg/mL BV for 0, 12, 24, and 48 h (Fig. 3(B)). The 
control cells had a regular spindle-like shape and the nuclei were elliptical and plump [33], 
and the cell surface seemed relatively smooth. Even after the cells were treated with 0.7 
μg/mL of BV for 48 h, the morphology of the MDA-MB-231 cells did not change. However, 
when the cells were treated with 1.5 μg/mL of BV for 48 h, the surface around nuclei became 
a little rougher than that of the control cells. As the concentration of BV increased to 3.0 
μg/mL, the cells changed greatly in size and shape; the cells shrunk and became round in 
shape. In addition, the cell membrane seemed to be rough due to protrusions and holes. And 
the change in surface roughness might be attributed to the damaged cell membranes by BV. 
Then, the time-dependent changes in MDA-MB-231 cells at 3.0 μg/mL of BV were examined 
(Fig. 3(B)). A little change in cell morphology was observed after 12 h of treatment. The cell 
seemed deformed after 24 h treatment, for example, the cell tails shrank a little. Over the 
course of 48 h, the cell morphology changed greatly in size and shape, and the tail also 
disappeared. Our previous study reported that the toxic effects of sodium lauryl sulfate (SLS) 
not only changed the spindle-like shape of L929 cells into a round shape, but also made the 
cell surface rough [34]. Therefore, the morphological changes in MDA-MB-231 cells might 
be attributed to the apoptotic cell death caused by BV. 
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Table 1. Peak assignment of Raman spectra for human MDA-MB-231 breast cancer cell 
[19,35–42] 

Peak 
(cm−1) 

Assignmenta 

DNA/RNA Proteins Lipids Carbohydrates 

621 C-C twist. Phe 

643 C-C twist. Tyr 

665 G, T 

725 A  

758 Ring br. Trp 

779 U, C, T ring br. 

828 O-P-O asym. str. Ring br. Tyr 

853 Ring br. Tyr 

878 
  

C-C-N+ sym. 
Str. 

C-O-C ring 

932  
C-C bk str. 
α-helix 

 C-O-C glycos 

1003 Sym. Ring br. Phe 

1032 C-H in-plane Phe 

1098 PO2
- str. Chain C-C str. C-O, C-C str. 

1124 C-C str. 

1156 C-C/ C-N str. 

1173 C-H Tyr, Phe 

1207 C-C6H5 str. Phe, Trp 

1265 Amide III, α-helix 

1310 CH3CH2 twist. 

1449 G, A CH def CH def CH def 

1576 G, A    

1605  C = C Phe, Tyr   

1658 Amide I, α-helix C = C str. 

aAbbreviations: A, adenine; U, uracil; G, guanine, C, dytosine; T, thymine,; Phe, phenylalanine; Tyr, tyrosine; Trp, 
tryptophan; br, breathing; bk,backbone; def, deformation vibration; str, stretching; sym, symmetric; asym, 
asymmetric; tw, twist. 

 
However, the most dramatic cellular changes in the MDA-MB-231 cells, associated with 

DNA, proteins, and lipids, were observed upon treatment with 3.0 µg/mL of BV (Fig. 4(D)). 
The major spectral differences were in the peaks associated with proteins (phenylalanine at 
1003 cm−1, 1032 cm−1, amide III at 1230-1320 cm−1 and amide I at 1658 cm−1), nucleic acids 
(U, C, and T at 779 cm−1, and PO2

- stretching at 1098 cm−1), and lipid (C-H deformation at 
1449 cm−1 and C = C stretching 1658 cm−1). The magnitude of Raman intensity at 1003 cm−1, 
1032 cm−1, corresponding to proteins, showed a decrease, which is due to the degradation of 
proteins as a related of cell death. Amide III (1230-1320 cm−1) and amide I (1600-1700 cm−1) 
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are the basic components of the protein structure, and also extremely sensitive to changes in 
the structure of the protein. As shown in Fig. 4(D), the amide III and amide I band widths in 
the BV-treated cells were narrower, compared to that of the control (gray color), which 
indicates the presence of a mixture of conformations, reflecting a difference in their protein 
secondary structure. The amide III band originates from the N-H in-plane deformation at 
1276 cm−1, coupled to the C-N stretching mode at 1243 cm−1 [43–45]. The amide I mode is a 
property of the peptide group, including the C = O stretching vibration with minor 
contributions from C-N and N-H motions [46–48]. Since the C = O stretching is differently 
involved in secondary structure elements via hydrogen bonds to the peptide N-H group, the 
band position correlates with different protein conformations. Thus, amide III and amide I 
bands are superimposed to get a multitude of single bands at different wavenumbers, which 
can be resolved in multiple components and attributed to different secondary structures [49–
51]. Moreover, the 3.0 µg/mL BV-treated MDA-MB-231 cells showed a shift from 1449 cm-1 
to 1443 cm-1, and 1658 cm-1 to 1654 cm-1. These Raman bands are frequently used to assign 
secondary structure to the proteins, and the shifts observed in these bands can be used as 
Raman markers for the conformational changes in the associated proteins as a result of the 
action of the BV. The band at 1098 cm−1 is considered as an internal standard for DNA 
content. As can be seen in Fig. 4(D), the intensity of the peak at 1098 cm−1 decreased in 3.0 
μg/mL BV-treated cells in comparison to the control, suggesting changes in the DNA content 
due to drug intercalation. This observation is also supported by a similar variation observed in 
the guanine band at 725, and 779 cm−1. These changes indicated nuclear DNA fragmentation 
as a result of apoptosis. Therefore, these bands can be considered as Raman signature for 
DNA intervention. It was previously reported that decrease in the Raman intensity was related 
to the degradation and conformational changes of proteins and DNA fragmentation, which 
correlated with cell death [19,21]. The intensity of the 1449 cm−1 (C-H deformation) and 1658 
cm−1 (C = C stretching) bands increased the lipid-related Raman signal, indicating the 
presence of intracellular vesicles. This behavior is consistent with the formation of the lipid 
vesicles at the cell surface as well as blebbing of the cell membrane during apoptosis [52,53]. 
A similar increase in these bands was reported previously after the MDA-MB-231 cells were 
exposed to etoposide, an anti-cancer agent, resulting in apoptotic cell death [28]. 

To investigate the correlation between the time dynamics of the identified apoptotic 
molecular events, Raman spectra of the MDA-MB-231 cells treated with 3.0 µg/mL BV were 
determined 0, 12, 24, and 48 h post-treatment as shown in Fig. 5(A). For a clear distinction 
between the spectral profiles, the BV- treated spectra were subtracted from the control (0 h) 
spectra (Fig. 5(B-D)). The changes in Raman spectra were insignificant at 12 and 24 h, 
whereas they demonstrated dramatic cellular and molecular changes at 48 h. After 48 h, a 
decrease in the magnitude of Raman intensity was observed at 1003 and 1032 cm−1 
(belonging to protein), and for the bands at 725, 779, and 1098 cm−1 (assigned to DNA). The 
intensity of the bands at 1449 and 1658 cm−1 reflected an increase in lipid-related Raman 
signal. As mentioned above, these results might indicate protein degradation, nuclear DNA 
fragmentation, and presence of intracellular vesicles leading to apoptotic cell death. 
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4. Conclusion 
In this study, we demonstrated the effects of concentration- and time-dependent BV treatment 
using Raman spectroscopy along with multivariate analysis. The Raman spectrum for the 
cells treated with 3.0 µg/mL of BV for 48 h corresponded to the Raman bands assigned to 
DNA and protein, and demonstrated a decrease in signal intensity, which was attributed to 
nuclear fragmentation and protein degradation. Differences in Raman spectra between the 
control and BV-treated cells correlated with the cellular events during apoptosis. The results 
of Raman spectroscopy showed good agreement with AFM and the conventional biological 
assays, such as viability, TUNEL, and western blot assays performed on the same types of 
cells. This study provides a new method to monitor the concentration- and time-dependent 
multi-molecular events via measurement of the vibrations of various biomolecules in living 
cells. Therefore, Raman spectroscopy along with multivariate analysis might be a useful tool 
for a label-free and noninvasive investigation of the anti-cancer effect of BV on human breast 
cancer cells. 
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